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ABSTRACT: One of the most important task in geotechnical design is the 

estimation of pertinent design soil parameters, but it may not be feasible to measure 

these parameters directly or there are too few direct measurements to get a sense of 

their variabilities (this is important for sensitivity analysis). The tradition of 

geotechnical engineering is steeped in empiricism and one notable aspect is arguably 

the widespread application of generic correlation models to estimate site-specific 

design parameters from indirect data, such as the results of laboratory index tests and 

field tests. These correlations (say between undrained shear strength and SPT-N) are 

invariably associated with significant transformation uncertainties, which are usually 

presented in the form of data scatter about the correlation line. This paper highlights 

the availability of extensive multivariate databases for clays, sands, and rocks that 

can be fruitfully exploited to develop global multivariate probability models. The 

improvements offered by these models (derived from a theoretically powerful 

multivariate normal framework) over existing bivariate correlations are: (1) multiple 

design parameters can be estimated simultaneously from multiple sources of indirect 

data, (2) precision of the estimates can be quantified using the 95% confidence 

region (non-trivial generalization of the well-known 95% confidence interval to 

multiple possibly correlated design parameters), (3) entire multivariate posterior 

distributions can be updated by combining these global models (treated as prior 

distributions) with site-specific data – this is significantly better than relying on pure 

judgment to combine site-specific data with prior experience, (4) serve as the 

calculation engine for SPM2 (Soil Properties Manual 2) – a software undergoing 

development that will obviate the need to learn multivariate probability theory and 

Bayesian updating, and (5) monetizing the value of information in site investigation 

by establishing an explicit link between type/number of tests conducted at a site, 

reduction of parameter estimation variability, and resulting design savings (if 

reliability-based design permitted in ISO2394:2015 were to be adopted). 

 

 
1 INTRODUCTION 

 
One of the most important task in geotechnical design is the estimation of pertinent 

soil parameters, particularly the values governing the behaviour of a geotechnical 
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structure at a limit state. There are at least two important aspects that one should 

consider, explicitly or otherwise. First, it may not be feasible to measure the desired 

soil parameters directly or the budget set aside for site investigation does not allow 

sufficient undisturbed samples and direct laboratory tests to be conducted (ideally, 

matching in-situ stress state, stress path, strain rate, drainage, etc.). It is important to 

perform a sufficient number of tests to get a good sense of ground variation and 

precision of design parameters. For example, the BCA/IES/ACES advisory note 

1/03 on site investigation and load tests provided the following guidelines: 

 
Site investigation should be carried out to sufficient extent and depth to establish the 

significant soil strata and ground variation. 

 

(a) The number of boreholes should be the greater of (i) one borehole per 300 sq m or (ii) 

one borehole at every interval between 10m to 30m, but no less than 3 boreholes in a 

project site. 

(b) Boreholes should go more than 5 metres into hard stratum with SPT blow counts of 100 

or more than 3 times the pile diameters beyond the intended founding level. 

 

Second, a geotechnical structure at a limit state typically interacts with a “zone of 

ground” and it is the mobilized values in this zone that one should consider in design. 

EN 1997−1 (2004), Clause 2.4.5.2 - Characteristic values of geotechnical parameters 

describes this “zone of ground” in the following two application rules: 

 
(7) The zone of ground governing the behaviour of a geotechnical structure at a limit state is 

usually much larger than a test sample or the zone of ground affected in an in situ test. 

Consequently the value of the governing parameter is often the mean of a range of values 

covering a large surface or volume of the ground. The characteristic value should be a 

cautious estimate of this mean value. 

 

(9) When selecting the zone of ground governing the behaviour of a geotechnical structure at 

a limit state, it should be considered that this limit state may depend on the behaviour of the 

supported structure. For instance, when considering a bearing resistance ultimate limit state 

for a building resting on several footings, the governing parameter should be the mean 

strength over each individual zone of ground under a footing, if the building is unable to 

resist a local failure. If, however, the building is stiff and strong enough, the governing 

parameter should be the mean of these mean values over the entire zone or part of the zone of 

ground under the building. 

 

The above two application rules essentially require the engineer to have a sense of 

how a geotechnical structure will behave prior to analysis. Hence, a common caveat 

in this estimation exercise is that engineering judgment/experience is vital – this 

exercise is not a matter of selecting numbers from a bore log arbitrarily and/or 

relying on statistics as a proxy for correct understanding of the soil-structure 

interaction behaviour. At the least, it would require the engineer to appreciate 

qualitative issues such as parameter values outside the approximate zone (say SPT-N 

values below a depth of B or 2B for a footing of width B) are less influential, special 

zones (low strength, highly compressible, discontinuities, etc.) may exercise a 

disproportionate effect on behaviour, and soil-structure interaction as described in 

Clause 2.4.5.2(9) above. Clause 2.4.5.2 is cognizant of the close inter-connection 
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between the ground, soil behaviour, and modelling in geotechnical engineering 

practice and the role of experience (supported by empiricism and precedent) and risk 

management in mediating these elements. Figure 1 shows a revised Burland Triangle 

(origin version attributed to Burland 1987) that illustrates the centrality of 

experience and risk management (Lee Barbour & Krahn 2004). 

 

 

 
 

Figure 1. Revised Burland Triangle (Lee Barbour & Krahn 2004). 

 
Although the notion of a “characteristic value” as described in Clause 2.4.5.2 is 

sensible, it has defied many attempts to clarify it to such an extent that engineers 

could roughly agree on the actual numerical value/profile when presented with the 

same bore log information (Bond & Harris 2008). The difficulty arises to a large 

extent from the spatial variability of the ground. The interaction between spatial 

variability and formation of critical slip surfaces is complex – the applicability of 

classical failure mechanisms and their solutions in standard texts is questionable 

given the standard homogeneous ground assumption underlying these solutions. 

Clause 2.4.5.2 attempts to cover this complex topic in application rule (11): 

 
(11) If statistical methods are used, the characteristic value should be derived such that the 

calculated probability of a worse value governing the occurrence of the limit state under 

consideration is not greater than 5%. 

 
NOTE In this respect, a cautious estimate of the mean value is a selection of the mean value of the limited set of 

geotechnical parameter values, with a confidence level of 95%; where local failure is concerned, a cautious estimate 

of the low value is a 5% fractile. 
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Recent research has demonstrated that this application rule is inadequate for the 

complexity of the problem and the range of spatial variability encountered in 

practice (Ching & Phoon 2013a, 2013b; Ching et al. 2014a, 2016a, 2016b, 2016c, 

2017a, 2017b; Hu & Ching, 2015). In addition, it is silent on how multiple correlated 

soil parameters in finite element analysis should be selected (Ching et al. 2017c). A 

realistic assessment of multiple characteristic values in the context of spatial 

variability where non-classical failure mechanisms can emerged is certainly beyond 

the reach of judgment/experience uninformed by analysis (Phoon 2017). 

 

For the purpose of this paper, it suffices to note that the above complications mainly 

arise from the “zone of ground governing the behaviour of a geotechnical structure 

at a limit state”. The consideration of this zone of ground in relation to a limit state is 

vital in design, but to keep the scope of this paper manageable, we will set this 

second aspect aside and focus solely on the first aspect, which is to estimate the 

pertinent soil parameter at a “point” in the ground (typically at a desired depth) 

using correlations. Hence, the spatial variation of a soil parameter is not considered 

in this paper. Because the estimation of a characteristic value relevant to design is 

beyond converting a field test result to a design parameter (say SPT N-value to 

undrained shear strength) in a depth-wise manner, it is not surprising to find the 

following Principle in Clause 2.4.5.2: 

 
(1)P The selection of characteristic values for geotechnical parameters shall be based on 

results and derived values from laboratory and field tests, complemented by well-established 

experience. 

 

The role of engineering judgment and experience, particularly how it complements 

statistical analysis, is explained in Phoon (2007) and would not be repeated herein. 

The purpose of this paper is to suggest an improvement to our ubiquitous correlation 

models. These correlation models are very useful in practice, because engineers can 

obtained an estimate of a soil parameter pertinent to design (called “design 

parameter”) using more commonly available data that are indirectly related to this 

design parameter, say data from a laboratory index test or a field test. In fact, these 

correlation models grew in popularity as a result of applying more rational soil 

mechanical principles to engineering practice. It is well appreciated that a rational 

model is only better than an empirical model if its input parameters can be reliably 

estimated (Lambe 1973). An early example is the estimation of the compression 

ratio from natural water content (Figure 2). It is worth pointing out that the majority 

of these correlations is bivariate in the sense of estimating one desired design 

parameter (such as compression ratio) from one indirect source of data (such as 

natural water content). A minority is multivariate in the sense of estimating one 

design parameter from multiple sources of data (such as natural water content and 

plasticity index). This multivariate correlation can appear in an approximate form of 

a series of bivariate correlations indexed by a secondary parameter. To our 

knowledge, none has considered simultaneous estimation of two or more design 

parameters from two or more sources of data. This requires deriving a conditional 

distribution from a multivariate probability framework so that (loosely speaking) the 

dependencies between all sources of data are accounted for. 
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Figure 2. Correlation between compression ratio and natural water content [Source: Fig. 

45.9, Terzaghi & Peck (1967) citing Fadum (1941)] 

 

The authors are of the opinion that our existing bivariate correlation models can be 

significantly improved by extending them using a multivariate probability 

framework. Although this framework is abstract and unfamiliar to most engineers, it 

can offer the following practical advantages: 

 

1. Multivariate transformation models can be obtained. For example, one can 

derive a relation between the compression ratio and multiple sources of 

indirect data, say liquid limit, plasticity index, initial void ratio, natural 

water content, cone tip resistance, and dilatometer modulus. Figure 2 is a 

“bivariate” model in the sense that the design parameter is estimated from 

one source of data (natural water content). The natural generalization from 

the existing bivariate case to the multivariate case is called a “transformation 

model” from hereon. 

 

2. These transformation models not only can predict the mean value of the 

design parameter but also can predict its coefficient of variation (COV). It is 

clear from Figure 2 that estimating the mean value (bold line) is not 

sufficient. It is natural to expect all transformation models to contain 

transformation uncertainty (scatter of the open circles about the bold line) 

and this uncertainty must be quantified explicitly as it has an impact on 

design. For example, the mean estimate of the compression ratio for a 

natural water content of 35% is 0.17. However, it can take values between 

0.14 and 0.20 (dashed lines). Adopting a compression ratio of 0.17 for 

design is not conservative, but adopting a value of 0.20 is arguably overly 

conservative as the dashed lines appear to indicate best and worst case 

estimates within the sample size of 30 measurements. The question of which 

estimate is appropriate in the face of uncertainty is best discussed in the 

context of reliability-based design (RBD) (Phoon & Retief 2016), which is 

outside the scope of this paper. It suffices to note that geotechnical RBD is 

permitted in Annex D of ISO2934:2015 (International Organization for 

Standardization 2015; Phoon et al. 2016) and the COV is needed for this 



6 
 

simplified risk-based design approach. It is also needed for sensitivity 

analysis even within the remit of our existing deterministic practice in the 

form of upper/lower bounds, e.g. mean plus/minus one standard deviation or 

95% confidence interval of the compression ratio. 

 

3. The multivariate probability model can be used as a proper and empirically 

supported prior distribution to derive the posterior distribution of design 

parameters based on limited but site-specific laboratory/field data. This prior 

is clearly much preferred over a pure judgment-based or an uninformative 

prior. Note that the entire multivariate distribution of multiple design 

parameters is derived, not simply means and COVs. When a multivariate 

distribution is available, multiple design parameters can be updated 

simultaneously from multiple laboratory/field measurements. This formal 

Bayesian updating approach is significantly more advantageous than relying 

on judgment alone to combine site-specific data with prior experience. 

 

4. The practical significance of updating is that biases and variabilities are 

generally reduced in the presence of site-specific data and it is possible to 

link this improvement to design savings explicitly in the context of RBD. By 

monetizing the value of site information, it will be easier for engineers to 

present site investigation to clients as an investment, rather than allowing it 

to be unjustifiably stigmatized as an un-necessary cost (Phoon & Ching 

2013a). The fact that many clients choose the minimum site investigation 

mandated by building regulations argues against the prevalent belief that 

geotechnical needs alone with an indirect link to safety are sufficient to 

convince clients to choose a more appropriate but more costly site 

investigation programme. 

 

This paper presents a summary of global clay/sand/rock databases and a description 

of the parameters/sites covered to dispel the belief that there are insufficient data to 

support the practical construction of such multivariate probability models. In short, it 

is possible to derive better transformation models for practice that will further 

enhance and justify the cost of site investigation – this is not theorizing for 

theorizing sake. Correlation between two soil parameters and its generalization to a 

correlation matrix to capture correlation between more than two soil parameters are 

briefly explained as these concepts are key to the construction of multivariate 

probability models. More complete theoretical details are given elsewhere (Ching & 

Phoon 2015a; Ching et al. 2016d). The biases and COVs of existing transformation 

models for clays, sands, and rocks are summarized as one useful direct outcome of 

this multivariate database compilation exercise. An on-going software development 

effort, called SPM2 (Soil Properties Manual version 2) is described to provide a 

glimpse of useful tools that an engineer can gain access to on his/her mobile to make 

better decisions on the choice of design soil/rock parameters. The name “Soil 

Properties Manual” is inspired by the seminal work done by Kulhawy & Mayne 

(1990) which is considered as “version 1”. It is not necessary for the engineer to 

learn multivariate probability theory and Bayesian updating to put SPM2 to good use 

in practice. After all, it is not necessary for the engineer to learn the Galerkin method 
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and finite element theory to compute internal forces and displacements. As pointed 

out above with reference to BCA/IES/ACES advisory note 1/03, the basic role of the 

engineer is to “establish the significant soil strata and ground variation” from all 

available site investigation data, precedents, and experience. SPM2 is intended as a 

supporting tool to enable the engineer to better fulfill this role. 

 

 

2 FROM EPRI EL-6800 TO SPM2 

 

The report EL-6800 “Manual on Estimating Soil Properties for Foundation Design” 

was published by the Electric Power Research Institute (EPRI) in 1990 (Kulhawy & 

Mayne 1990). It remains one of the most widely used and comprehensive reference 

for estimating design parameters from laboratory or field test data for soils. 

Extensive correlations for in-situ stress, strength, elastic behaviour, time-dependent 

deformability, and permeability are presented, with commentaries on their historical 

origins and subsequent evolution, supporting data sources, and limitations. Examples 

are shown in Figure 3. In fact, one important limitation that is obscured when a 

correlation is plotted as a simple curve without the background data cloud is the lack 

of guidance on the range of applicability and the degree of transformation 

uncertainty. The danger of extrapolating beyond the calibration database is real 

when the range of applicability is not clearly shown. A lack of appreciation of the 

transformation uncertainty can mislead an inexperienced engineer to assign more 

precision to the estimate than what is warranted by the data scatter, which can be 

significant as shown in Figure 3. In addition, if the recommended curve is an 

average curve, it is not possible to derive a conservative curve for design without a 

qualitative appreciation of the data scatter. If the recommended curve is a 

“conservative” curve, the degree of conservatism is usually not provided. These 

problems are associated with the lack of information on the transformation 

uncertainty. It is clear that a characterization of the transformation uncertainty, be it 

visually through presentation of the data cloud or quantitatively through presentation 

of the statistics, is very useful even in the context of existing deterministic design. 

To our knowledge, EL-6800 is the first report to provide key statistics such as the 

sample size (n), coefficient of determination (r2), and the standard error (S.D.) for all 

correlations in a systematic way. Some attempts are carried out to ensure that the 

data are homogeneous, by screening out more unusual geo-materials (e.g. fissured 

clays). The report also cautions against indiscriminate application of correlations, 

particularly where some geo-materials may exhibit different behaviours in the 

presence of cementation (clay, sand), sensitivity (clay), organic/diatom content 

(clay), aging (sand), plastic fines content (sand), particle crushing (sand), etc. 

 

To the authors’ knowledge, EL-6800 has remained a useful reference in design 

offices to this day. The goal of improving correlations should be considered with 

EL-6800 as the baseline and the availability of mobile technology in mind. For the 

time being, our software project SPM2 (Soil Properties Manual version 2) will target 

the following “wish list” that is developed based on the needs of the modern day 

geotechnical engineer: 



8 
 

  
(a) (b) 

  
(c) (d) 

 

Figure 3. Examples of correlations in EPRI EL-6800 (Kulhawy & Mayne 1990). 

 

1. Compile existing soil/rock data in digital form (some global databases are 

presented in Table 1). This is part of a long term project to update the data 

sources in EL-6800, which was published 18 years ago. 

 

2. Develop data sharing and privacy protection protocols (ongoing). 

 

3. Extend existing bivariate correlations to multivariate probability models (a 

brief discussion on how to do this is given in Section 4). 

 

4. Outlier/error detection, including clustering to recognize potentially 

distinctive populations (e.g. intact versus fissured clays) (ongoing). 

 

5. Selection of appropriate prior (related to #4) and determination of updated 

posterior based on site-specific data (ongoing). The prior and posterior 

distributions are general in the sense that they can be multivariate and non-

normal in their marginal distributions. 
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6. Export precision of the estimates in the form of a 95% confidence region 

(non-trivial generalization of the well-known 95% confidence interval to 

multiple possibly correlated design parameters) for sensitivity analysis 

(examples given in Fig. 4). 

 

7. Export generic or site-specific multivariate transformation equations for 

estimation of design soil parameters (examples given in Tables 2, 3, and 4). 

 

8. Export the bias and variability (in the form of a coefficient of variation) of a 

transformation model as benchmarked against an intended range of soil/rock 

conditions (examples given in Tables 2, 3, and 4). 

 

9. Export statistics and distributions of the input design parameters for 

reliability-based design (not discussed). 

 

10. Make SPM2 engineer-friendly on mobile (ongoing). 

 

The remaining sections of this paper present some of the outcomes achieved in this 

SPM2 project. 

 

 

3 MULTIVARIATE SOIL/ROCK DATABASES 

 

This section will review some multivariate soil/rock databases. Table 1 shows a 

summary of these databases, labelled as (geo-material type)/(number of parameters 

of interest)/(number of data points). This research has inspired comparable databases 

to be assembled in the literature recently (Müller et al. 2014, Liu et al. 2016). The 

availability of SPM2 as a freeware will hopefully encourage more data sharing and 

further enrichment of these databases to cover more parameters and/or more site 

conditions. 

 

It is important to emphasize that the multivariate distributions constructed from the 

databases shown in Table 1 are generic in nature, because data are drawn from many 

sites rather than one single site. Nonetheless, the authors submit that it is reasonable 

to adopt these multivariate distributions as prior information for a specific site. The 

posterior probability distribution of a site-specific design parameter can be obtained 

from this prior information when it is updated by site-specific field data. There are 

occasional concerns expressed that only site-specific prior information is meaningful 

in this updating exercise. In other words, data gathered from the literature pertaining 

to comparable soils and/or sites cannot be used or more specifically, a generic 

multivariate distribution is not useful as prior information. This concern is 

understandable, but it is at odds with existing practice. The tradition of geotechnical 

engineering is steeped in empiricism and one notable aspect is arguably the 

widespread application of non-site specific generic transformation models to 

estimate site-specific design parameters. Report EL-6800 is one notable example. 

Whether one derives a single cautious estimate or a probability distribution from a 
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transformation model, the role of engineering judgment and experience in selecting 

the appropriate transformation model and weeding out unreasonable estimates is 

obviously integral to this practice and needs no further emphasis. 

 

3.1 CLAY/5/345 (Ching & Phoon 2012a) 

 

There are 345 data points with complete {Y1 = LI, Y2 = su, Y3 = su
re, Y4 = ’

p, Y5 = 

’
v} information from 37 sites in the CLAY/5/345 database. Each data “point” 

consists of a set of values stored in one row in the Excel worksheet. This database is 

a genuine multivariate database, because the {Y1, Y2, …, Y5} information is 

simultaneously known for each data point. The geographical regions cover Canada, 

United States, Sweden, Japan, Thailand, United Kingdom, Brazil and India. The clay 

parameters cover a wide range of sensitivity (1~several hundred; few sites >1000), 

OCR (1~4; one site up to 12) and LI (0.1~3.8). The clay types are also broad, 

covering marine clays, sandy/silty clays, Leda clays, etc. Most are quick clays with 

St > 8, and highly OC (fissured) and organic clays are nearly absent in this database. 

 

For all cases, the su values in the literature were obtained from various types of tests, 

including CIUC (isotropically consolidated undrained compression), CIUE 

(isotropically consolidated undrained extension), CK0UC (K0-consolidated 

undrained compression), CK0UE (K0-consolidated undrained extension), DSS (direct 

simple shear), UU (unconsolidated undrained compression), UC (unconfined 

compression), and FV (field vane). These values cannot be directly compared 

because su depends on stress state, strain rate, and sampling disturbance. By 

following the recommendations made by Bjerrum (1972), Mesri & Huvaj (2007), 

and Kulhawy & Mayne (1990), these su values are all converted to the “mobilized” 

su values, denoted by su(mob), which is defined as the in-situ undrained shear 

strength mobilized in embankment and slope failures (Mesri & Huvaj 2007). 

 

3.2 CLAY/6/535 (Ching et al. 2014b) 

 

The CLAY/6/535 database consists of 535 lightly overconsolidated clay data points 

with complete measurement of {Y1 = su/σ'
v, Y2 = OCR, Y3 = (qtσv)/σ'

v, Y4 = 

(qtu2)/σ'
v, Y5 = (u2u0)/σ'

v, Y6 = Bq} from 40 sites. This database is a genuine 

multivariate database, because the {Y1, Y2, …, Y6} information is simultaneously 

known for each data point. The geographical regions cover Brazil, Canada, Hong 

Kong, Italy, Malaysia, Norway, Singapore, Sweden, UK, USA, and Venezuela. The 

clay parameters cover a wide range of OCR (mostly 1~6 except for 5 sites) and wide 

range of plasticity index PI (10~168). Highly OC (fissured) and organic clays are 

nearly absent in this database. For all cases, the reported su values were obtained 

from various types of tests. All measured su is converted into the equivalent CIUC 

values. 
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3.3 CLAY/7/6310 (Ching & Phoon 2013c) 

 

The CLAY/7/6310 database consists of a large number of su data points obtained 

from seven different test procedures (CIUC, CIUE, CK0UC, CK0UE, DSS, UU, and 

UC). This database is not a genuine multivariate database, because su is typically 

known for a small subset of the seven procedures. Many su data points are associated 

with a known test mode (6310 points), a known OCR (4584 points), and a known 

plasticity index (PI) (4541 points). There are some data points in which OCR is not 

known. CLAY/7/6310 consists of data points from 164 studies. The number of data 

points associated with each study varies from 1 to 167 with an average 38.5 data 

points per study. The geographical regions cover Australia, Austria, Brazil, Canada, 

China, England, Finland, France, Germany, Hong Kong, Iraq, Italy, Japan, Korea, 

Malaysia, Mexico, New Zealand, Norway, Northern Ireland, Poland, Singapore, 

South African, Spain, Sweden, Thailand, Taiwan, United Kingdom, United States, 

and Venezuela. The clay parameters cover a wide range of OCR (mostly 1~10, few 

studies OCR > 10, but nearly all studies are with OCR < 50) and a wide range of 

sensitivity St (sites with St = 1~ tens or hundreds are fairly typical). 

 

3.4 CLAY/10/7490 (Ching & Phoon 2014a) 

 

The CLAY/10/7490 database consists of 7490 data points for ten clay parameters 

from 251 studies in the literature. This database is not a genuine multivariate 

database, because the {Y1, Y2, …, Y10} information is typically partially known for 

each data point. The number of data points associated with each study varies from 1 

to 419 with an average 30 data points per study. The geographical regions cover 

Australia, Austria, Brazil, Canada, China, England, Finland, France, Germany, Hong 

Kong, India, Iraq, Italy, Japan, Korea, Malaysia, Mexico, New Zealand, Norway, 

Northern Ireland, Poland, Singapore, South Africa, Spain, Sweden, Thailand, 

Taiwan, United Kingdom, United States, and Venezuela. The clay parameters cover 

a wide range of overconsolidation ratio (OCR) (but mostly 1~10), a wide range of 

sensitivity (St) (sites with St = 1~ tens or hundreds are fairly typical), and a wide 

range of plasticity index (PI) (but mostly 8 ~ 100). Most data points are classified as 

clays (some are sensitive or organic clays) on the Robertson’s CPTU soil 

classification chart. Some data points are classified as clayey silts or silt mixtures, 

and few are classified as sand mixtures or sands. 

 

CLAY/10/7490 contains ten dimensionless clay parameters categorized into three 

groups: 

 

1. Index parameters, including liquid limit (LL), plasticity index (PI), and liquidity 

index (LI). 

 

2. Stresses and strengths, including normalized vertical effective stress ('
v/Pa) (Pa 

is one atmosphere pressure = 101.3 kN/m2), normalized preconsolidation stress 

('
p/Pa), normalized undrained shear strength (su/'

v), and sensitivity (St = su/su
re) 

(su
re is the remoulded undrained shear strength). The su values in the literature 
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were obtained from various types of tests. These su values are all converted to 

su(mob). 

 

3. Parameters from the piezocone test (CPTU), including pore pressure ratio Bq = 

(u2-u0)/(qt-σv) (u2 is the pore pressure behind the cone; u0 is the hydrostatic pore 

pressure; qt is the corrected cone tip resistance; σv is the total effective stress), 

normalized cone tip resistance (qt-σv)/σ'
v, and normalized effective cone tip 

resistance (qt-u2)/σ'
v. 

 

3.5 F-CLAY/7/216 (D’Ignazio et al. 2016) 

 

The F-CLAY/7/216 database consists of 216 genuine multivariate clay data points 

from 24 different test sites in Finland. Undrained shear strength from field vane 

(su
FV), vertical effective stress ('

v), vertical preconsolidation pressure ('
p), natural 

water content (wn), liquid limit (LL), plastic limit (PL) and sensitivity (St = su/su
re) 

are simultaneously known for each data point. 

 

3.6 SAND/7/2794 (Ching et al. 2017d) 

 

The SAND/7/2794 consists of 2794 data points for seven parameters of cohesionless 

soils from 176 studies in the literature. The label “SAND” broadly denote 

cohesionless soils, siliceous sands, and gravels. This database is not a genuine 

multivariate database. The number of data points associated with each study varies 

from 1 to 295 with an average 9.3 data points per study. Unlike clay databases that 

are dominated by data from undisturbed in-situ clay samples, the SAND/7/2794 

database is dominated by data from laboratory reconstituted soils such as Erksak, 

Hokksund, Monterey, Ottawa, Sacramento River, Ticino, and Tonegawa sands. 

Many of these reconstituted soils are clean sands. The remaining (about 15%) data 

points in the database are in-situ samples obtained from tube sampling, block 

sampling, or ground freezing techniques. The geographical regions for these in-situ 

samples cover Canada, Chile, Germany, Greek, India, Italy, Japan, Kuwait, Pakistan, 

Puerto Rico, Russia, Slovakia, Taiwan, United Kingdom, and United States. The 

parameters in SAND/7/2794 cover a wide range of median grain size (D50) (0.1mm 

to more than 100mm), uniformity coefficient (Cu) (1 to more than 1000), relative 

density (Dr) (-0.1% to 117%), and overconsolidation ratio (OCR) (1 to 15, but 

mostly 1). 

 

SAND/7/2794 contains seven sand parameters categorized into three groups: 

 

1. Index parameters: the median grain size (D50), coefficient of uniformity (Cu), 

and relative density (Dr). 

 

2. Effective stress and strength: the normalized vertical effective stress ('
v/Pa) ('

v 

is the vertical effective stress, and Pa is one atmosphere pressure = 101.3 kN/m2) 

and effective stress friction angle (). The friction angle is the secant friction 

angle obtained in a triaxial compression test. 
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3. In-situ tests: for cone penetration test (CPT), the normalized cone tip resistance 

qt1 = (qt/Pa)CN is recorded, where qt is the cone tip resistance, and CN is the 

correction factor for overburden stress. For standard penetration test (SPT), the 

normalized N value (N1)60 = N60CN is recorded, where N60 is the N value 

corrected for the energy ratio. 

 

3.7 ROCK/9/4069 (Ching et al. 2017e) 

 

The ROCK/9/4069 database consists of 4069 data points from 184 studies for nine 

parameters of intact rocks. Jointed rock masses are not covered by this database. 

This database is not a genuine multivariate database. The number of data points 

associated with each study varies from 1 to 163 with an average 23.6 data points per 

study. The database is dominated by igneous and sedimentary rocks (27.5% and 

59.4%, respectively). The remaining (about 13.1%) data points are metamorphic 

rock. About 14% of the data points are for weathered rocks, and about 4% are 

foliated metamorphic rocks. There is no data point for saturated rocks. The 

geographical regions cover 44 countries/regions, including Afghanistan, Australia, 

Austria, Brazil, Canada, China, Egypt, France, Germany, Greece, Hong Kong, 

Hungary, India, Indonesia, Iran, Israel, Italy, Japan, Macao, Malaysia, Mexico, 

Morocco, Nepal, Netherlands, New Zealand, Nigeria, North Sea, Norway, Pakistan, 

Portugal, Russia, Saudi Arabia, Singapore, South Africa, South Korea, Spain, 

Sweden, Taiwan, Thailand, Turkey, United Kingdom, United States, Ukraine, and 

Uruguay. The properties of the data in ROCK/9/4069 cover a wide range of unit 

weight () (15 to 35 kN/m3), porosity (n) (0.01 to 55%), uniaxial compressive 

strength (c) (0.7 to 380 MPa), Young’s modulus (E) (0.03 to 120 GPa), and P-wave 

velocity (Vp) (0.4 to 8 km/sec). 

 

ROCK/9/4069 contains nine intact rock parameters categorized into four groups: 

 

1. Index properties: porosity (n), unit weight (), L-type Schmidt hammer hardness 

(RL), and Shore scleroscope hardness (Sh). 

 

2. Strengths: Brazilian tensile strength (bt), point load strength index (Is50), and 

uniaxial compressive strength (c). Note that the point load strength Is is 

corrected to a standard diameter of 50 mm, namely Is50, because point load test 

can be conducted over a wide range of diameter. 

 

3. Stiffness: Young’s modulus (E). In ROCK/9/4069, 50.6% of the E data are Et50 

(tangent modulus at 50% of the peak strength), 10.1% are Es50 (secant modulus 

at 50% of the peak strength), and 39.3% are Eav (average modulus for the linear 

portion of stress-strain curve). The E values for these three definitions do not 

differ much, compared with the transformation uncertainty in E. As a result, E 

data with different definitions are combined to form the entire E data. 

 

4. Dynamic property: P-wave velocity (Vp). 
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4 MULTIVARIATE PROBABILITY FRAMEWORK 
 

We broadly spoke of “correlations” in Section 2 without making this important 

concept precise. However, it is evident from Figure 3 that “correlations” are very 

useful as far as estimating design parameters is concerned. This section provides a 

brief introduction to how the dependency information between two parameters (say 

su and SPT-N) can be captured numerically using a single number called a 

correlation and how this concept can be extended in a simple but powerful way to 

capture the much more complicated dependency structure underlying multiple soil 

parameters. It is evident that no estimation is possible if two parameters vary 

independently. Section 3 clearly shows that we do not live in a two-parameter 

universe when the behaviour of geo-materials is characterized. Despite its abstract 

nature, this multivariate probability framework is the simplest possible to enable 

estimation and updating of multiple design parameters in a consistent way (Phoon 

2006). It is sufficient for the engineer to appreciate the physical significance of a 

correlation explained below – the mathematical intricacies will be handled by SPM2. 

To illustrate the concept of correlation, let us consider the following simple 

transformation between two soil parameters (Y1, Y2): 

 

1 2Y =a+bY +ε  (1) 

 

The transformation model is the functional relation Y1 = a + bY2, while  is a normal 

random variable with mean = 0 and standard deviation = sε. An example is Y1 = 

ln(su/pa) and Y2 = ln(N) shown in Figure 3c. The equation ln(su/pa) = 

ln(0.29)+0.72ln(N) is shown as a straight line. The transformation uncertainty is  

 it can be visualized as the data scatter about the straight line. When sε = 0, there is 

no scatter. The product-moment (Pearson) correlation between Y1 and Y2 is defined 

as: 

 

 

   

 

 

21 2

12
2 2

1 2 2 ε

b Var YCOV Y ,Y
ρ = =

Var Y Var Y b Var Y +s




 (2) 

 

where Var(Y) denotes the variance of Y, and Cov(Y1,Y2) denotes the covariance 

between Y1 and Y2. 

 

It is clear that if sε = 0 (no data scatter), 12 = 1 and perfect correlation exists 

between Y1 and Y2. In this case, given the information of Y2 = y2, Y1 = a + by2 is 

deterministic, and COV = 0 for Y1 (i.e., Y1 is no longer uncertain when Y2 is known). 

For example, in the absence of data scatter, if Y2 = ln(N) = ln(10), then ln(su/pa)  

0.42 and the engineer could confidently estimate su  150 kPa. In contrast, if sε is 

large (large data scatter), 12 is close to zero, and weak correlation exists between Y1 

and Y2. In this case, given the information of Y2 = y2, Y1 = a + by2 +  is almost the 

same as  and COV is relatively larger for Y1 (i.e., no point measuring Y2 if the 

purpose is to estimate Y1). 



15 
 

The above simple example shows that correlation the ij between (Yi, Yj) quantifies 

how effective one piece of information (Yi) can be used to update a second piece of 

information (Yj), and such effectiveness can be quantified by the updated COV of Yj 

 the updated COV is small if ij is close to 1 and is relatively larger if ij is close 

to zero. Evans (1996) labelled |ij|  0.8 as “very strong”, 0.6  |ij| < 0.8 as “strong”, 

0.4  |ij| < 0.6 as “moderate”, 0.2  |ij| < 0.4 as “weak”, and |ij| < 0.2 as “very 

weak”. 

 

Consider another example with three soil parameters: Y1 = ln(su/v), Y2 = LI, Y3 = 

ln(OCR) (v is the vertical effective stress; LI is the liquidity index; OCR is the 

overconsolidation ratio), and consider the following two transformation models: 

 

 

   

u v

u v

ln s σ =-0.87+0.24 LI+ε

ln s σ =-1.47+0.8 ln OCR +e

 

 
 (3) 

 

Note that the second equation is related to the SHANSEP concept (Ladd & Foott 

1974). The question now is how to update Y1 = ln(su/v) given the bivariate 

information of [LI, ln(OCR)]? The key observation here is that the knowledge of 12 

and 13 is not sufficient for the updating – we also need to know 23. If 23 = 1 (this 

can happen if  = e), one piece of the information in (LI, OCR) is redundant, and we 

only need the information LI (or OCR) to update ln(su/v). In contrast, if 23 is 

relatively small (this may happen if  and e are statistically independent), both pieces 

of information (LI, OCR) should be used to update ln(su/v). That is to say, updating 

Y1 based on multivariate information (Y2 = y2, Y3 = y3, …, Yn = yn) requires pairwise 

(or bivariate) correlations (ij: i = 1, …, n-1; j = i+1, …, n). Note that only n(n-1)/2 

correlations are needed, because ij = ji by definition. 

 

Generally speaking, for updating purposes, a multivariate probability distribution 

function should be characterized from multivariate information, e.g., (su, OCR, N) 

simultaneously measured at approximately the same spatial point in the soil mass. 

The collection of bivariate correlations (ij: i = 1, …, n-1; j = i+1, …, n) is not 

sufficient. However, complete multivariate information is rarely available. For 

example, only CLAY/5/345, CLAY/6/535, and F-CLAY/7/216 are “complete”. 

Among multivariate probability distributions, the multivariate normal distribution is 

available analytically and can be easily constructed based on the collection of 

bivariate correlations alone. Because bivariate correlations between soil parameters 

are more commonly available (e.g., Figure 3) the multivariate normal distribution is 

a sensible and practical choice to capture the multivariate dependency among soil 

parameters in the presence of transformation uncertainties (Phoon 2006). 

 

Many soil parameters are not normally distributed. Let Y denote a non-normally 

distributed soil parameter. One well known cumulative distribution function (CDF) 

transform approach can be applied to convert Y into a standard normal variable X: X 

= -1[F(Y)], where (.) is the CDF of the standard normal random variable, F(.) is 
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the CDF of Y, and -1(.) is the inverse function of (.). The CDF transform 

approach does not admit an analytical solution, unless F(Y) is a special function 

belonging to the Johnson system of distributions (Phoon & Ching 2013b; Ching & 

Phoon 2015a). There is significant computational advantage in adopting the Johnson 

system of distributions for Bayesian updating as well. 

 

A set of multivariate soil parameters Y = (Y1, Y2, , Yn) can be transformed into X 

= (X1, X2, , Xn) by mapping Y1 to X1, Y2 to X2, and so forth. By construction, X1, 

X2, …, Xn are individually standard normal random variables. It is crucial to note 

here that collectively (X1, X2, …, Xn) does not necessarily follow a multivariate 

normal distribution even if each component is normally distributed. Even so, 

applications on actual multivariate databases presented in Section 3 showed that the 

multivariate normal distribution is an acceptable approximation for clays, sands, and 

rocks. 

 

The multivariate (standard) normal probability density function for X = (X1, X2, …, 

Xn) can be defined uniquely by a correlation matrix: 

 

   
1 n

2 2
1

f X 2π exp X X
2

       
 

C C  (4) 

 

where C is the correlation matrix. For n = 3, the correlation matrix is given by: 

 

12 13

12 23

13 23

1 δ δ

= δ 1 δ

δ δ 1

 
 
 
  

C  (5) 

 

where ij = product-moment (Pearson) correlation between Xi and Xj (not equal to 

the correlation ij between the original physical variable Yi and Yj). It is clear that 

the full multivariate dependency structure of a normal random vector only depends 

on a correlation matrix (C) containing bivariate correlations between all possible 

pairs of components, namely X1 and X2, X1 and X3, and X2 and X3. One may be 

tempted to say that it is not necessary to measure X1, X2, and X3 simultaneously. In 

other words, information on X1 and X2, X1 and X3, and X2 and X3 can be collected at 

three separate borehole locations, rather than one single borehole location (which is 

a more restrictive condition). However, although the former collection strategy can 

produce three correlation coefficients to populate C fully, it does not guarantee that 

C is a positive definite matrix. This abstract but important matrix property is 

explained elsewhere (Ching & Phoon 2015a; Ching et al. 2016d). It suffices to note 

here that multivariate dependency is more complicated than the superficial 

simplicity of Eq. (5). 
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5 BIAS AND COV OF EXISTING TRANSFORMATION MODELS 

 

Useful compilations of existing transformation models for soils and rocks are 

available in the literature (e.g., Djoenaidi 1985; Kulhawy & Mayne 1990, Mayne et 

al. 2001; Zhang 2016). Tables 2 to 4 show some examples. All existing 

transformation models are suitable for the range of conditions found in their own 

calibration databases. However, some existing transformation models are calibrated 

by local databases. These local transformation models have their merits. However, 

for scenarios where local experiences are not available, it may be desirable to adopt 

a generic transformation model calibrated by a global database such as 

CLAY/10/7490, SAND/7/2794, and ROCK/9/4069. 

 

The bias and COV for existing clay transformation models can be calibrated using 

the CLAY/10/7490 database (Table 2, with the exception of Mr models), those for 

existing sand transformation models can be calibrated using the SAND/7/2794 

database (Table 3), whereas those for existing intact rock transformation models can 

be calibrated using the ROCK/9/4069 database (Table 4). For comparison, Mr 

models in Table 2 are calibrated using a local database J-Clay/5/124. It is not 

surprising that the bias is close to 1 as the equations are developed from the same 

database. The COV is always smaller for a local database. To explain the 

significance of the bias and COV for a transformation model, consider the qt-p 

model proposed by Kulhawy & Mayne (1990) in Table 2. The actual target value is 

p/Pa, and the predicted target value is 0.33(qt-v)/Pa. For each data point in the 

database with simultaneous knowledge of (qt-v, p), the ratio (actual target 

value)/(predicted target value) = (p/Pa)/ [0.33(qt-v)/Pa] can be computed. The 

sample mean of this ratio is called the bias factor (b) for the transformation model. 

The sample coefficient of variation (COV) of this ratio is called the COV of the 

transformation model. To be specific, 

 

Actual target value = predicted target value b ε   (6) 

 

where b is the bias factor (b = 1 means unbiased as measured against a specific 

global database such as CLAY/10/7490), and  is random term with mean = 1 and 

COV = . If  = 0, there is no data scatter about the transformation model, i.e. the 

prediction is single-valued or deterministic, rather than a distribution. The bias 

factors and COVs for some clay/sand/rock transformation models are shown in the 

last two columns of Tables 2 to 4, respectively. The number of data points used for 

each calibration is listed in the table (‘N’ in the fifth column). 

 

The bias and COV of a transformation model can be adopted to derive the unbiased 

estimate and 95% CI, described as follows. Consider again the qt-p model, the 

calibrated b = 0.97 and calibrated  = 0.39. Let the site-specific (qt-v) value for the 

new design site be denoted by (qt-v)new, the unbiased estimate for (p)new is simply 

b(predicted target value) = 0.97[0.33(qt-v)]. By assuming  to be lognormal, the 

95% CI for (p)new can be expressed as 
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 2

2

Unbiased estimate
exp 1.96 ln 1 θ

1 θ

    
  

 (7) 

 

Consider a case in the new design site with qt,new = 1000 kN/m2, Bq,new = 0.1, and 

v,new = 100 kN/m2. The unbiased estimate for p,new is equal to 0.97[0.33(1000-

100)] = 288.1 kN/m2, whereas Eq. (7) suggests that the 95% CI is 128.4  p,new  

561.1 kN/m2. 

 

It is worth noting that the 95% CI is genuine (i.e., the chance for the actual target 

value to be within the 95% CI is indeed close to 95%) only if the design site is a 

general site from the same “population” for the calibration database, e.g., 

CLAY/10/7490. If the design site is from a different population, the 95% CI may not 

be genuine. For instance, for a Finland site, the chance for the actual target value to 

be within the above nominal 95% CI (with b and  calibrated by F-CLAY/7/216) 

may be greater than 95%. Also, the numbers of calibration data points (N) for some 

sand transformation models are quite limited (Table 3). For those transformation 

models, their nominal 95% CI may not be genuine, either. 

 

Now consider the qt-su model proposed by Ching & Phoon (2012b) in Table 2. The 

calibrated b = 0.95 and calibrated  = 0.49. The unbiased estimate for [(qt-v)/su]new 

is 0.95[29.1exp(-0.51Bq,new)] = 26.27. This suggests the unbiased estimate for 

su,new is simply (qt-v)new/26.27 = (1000-100)/26.27 = 24.3 kN/m2.  Equation (7) 

suggests that The 95% CI for [(qt-v)/su]new is 9.5  [(qt-v)/su]new  58.56.  This 

suggests the 95% CI for su,new is (qt-v)new/58.56  su,new  (qt-v)new/9.5, or simply 

15.4  su,new  94.7 kN/m2. 

 

As shown above, unbiased estimates and 95% CIs for p and su can be obtained 

from the existing transformation models in Tables 2-4 calibrated by soil/rock 

databases. Alternatively, generic transformation models can be directly produced by 

the multivariate probability models calibrated by CLAY/10/7490, SAND/7/2794, 

and ROCK/9/4069 (see Ching & Phoon 2014b, Ching et al. 2017f, and Ching et al. 

2017g for such models). These transformation models have the following 

advantages: (a) multiple input information is allowed; (b) multiple outputs are 

allowed; moreover, the joint distribution of all output parameters can be updated.  

Ching & Phoon (2014b) considered an example involving updating the normalized 

preconsolidation stress (p/Pa) and the normalized undrained shear strength (su/v) 

based on the normalized effective vertical stress (v/Pa), the CPTU pore pressure 

ratio (Bq) and the CPTU normalized cone tip resistance [(qt-v)/v].  The left plot in 

Figure 4 shows the multivariate probability density function (PDF) based on the 

CLAY/10/7490 database.  This multivariate PDF is referred to as the “prior” PDF 

that purely reflects the multivariate database.  Given the site-specific site 

investigation data (v/Pa)new, Bq,new, and [(qt-v)/v]new, the multivariate PDF can be 

updated in the “posterior” PDF, as shown in the right plot in Figure 4. Note that the 

95% confidence region, which can be interpreted as values falling within a 

probability density contour that captures 95% of the probability mass, is not a 
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rectangle constituted by the individual confidence intervals (dashed lines in Fig. 4), 

because the design parameters, (p/Pa) and (su/v), are correlated. 

 

 
 
Figure 4.  Prior (left) and posterior (right) PDFs for (p/Pa) and (su/v). 

 
 
6 CONCLUDING REMARKS 

 
It is accurate to say that the estimation of design parameters has not developed in 

tandem with significant advances in numerical analysis. The Burland Triangle 

clearly advocates that geotechnical practice requires knowledge of the ground, soil 

behaviour, and modelling and mediation of their inter-connections by experience 

(empiricism and precedent) and risk management. There is an important inter-

connection between estimating a design parameter at a point in the ground and 

estimating the mobilized parameter for a zone of ground governing the behaviour of 

a geotechnical structure at a limit state. This paper focuses only on the former aspect. 

 

One notable aspect that remains largely empirical is the widespread application of 

generic correlation models to estimate site-specific design parameters from indirect 

data, such as the results of laboratory index tests and field tests. These correlations 

(say between undrained shear strength and SPT-N) are invariably associated with 

significant transformation uncertainties, which are usually presented in the form of 

data scatter about the correlation line. While transformation uncertainties can be 

reduced by accruing better knowledge of soil/rock behaviour or better testing 

methods, they are unlikely to become negligible in the foreseeable future. 

 

In the opinion of the authors, this critical design parameter estimation step can be 

improved by characterizing transformation uncertainties quantitatively and doing so 

in a multivariate probability framework. In practice, site investigation information 
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always appears in a multivariate form. For example, it is not uncommon to find data 

on unit weight, plasticity index, liquid limit, natural water content, SPT-N, and 

undrained shear strength in a bore log. Section 3 presents five multivariate property 

databases for clays, one for sands, and one for rocks to showcase the availability of 

extensive real soil and rock data to undertake this improvement in practice (not 

merely in theory). One example is the CLAY/10/7490 database that consists of 7490 

data points from 251 studies covering index parameters, stresses and strengths, and 

piezocone parameters. 

 

The key obstacle to realizing this improvement in practice is the lack of a 

probabilistic property estimation software. An engineer may be able to construct 

existing bivariate correlations using regression analysis. Tools for regression 

analysis are commonly available, such as the Regression function in the Data 

Analysis Toolbox of EXCEL. The construction of a multivariate probability 

distribution from a multivariate soil/rock database is less straightforward, both in 

terms of demanding a more sophisticated understanding of multivariate dependency 

(this is more complex than a correlation coefficient describing the dependency 

between two parameters as explained in Section 4) and the lack of genuine 

multivariate databases. Although Bayesian updating is not discussed in this paper, it 

is a very useful tool to combine prior information with current site-specific data and 

it is one major practical application of the multivariate probability distribution. The 

engineer needs to be fairly computationally sophisticated to compute the desired 

posterior distributions. The outcomes from Bayesian updating are however far 

superior to what an engineer can size up from judgment alone. Details are given 

elsewhere (Ching & Phoon 2015a; Wang et al. 2016a). 

 

A probabilistic property estimation software called SPM2 (Soil Properties Manual 

version 2) is currently being developed to remove this obstacle. It is envisaged that 

an engineer can gain access to SPM2 on his/her mobile to make better decisions on 

the choice of design soil/rock parameters and to update the full posterior 

distributions of these parameters in real time based on site-specific data. If the 

characteristic value is defined as a 5% fractile, this value can be calculated by SPM2 

from the posterior distribution. It is not necessary for the engineer to learn 

multivariate probability theory and Bayesian updating to put SPM2 to good use in 

practice. After all, it is not necessary for the engineer to learn the Galerkin method 

and finite element theory to compute internal forces and displacements. In the 

opinion of the authors, demonstrating the usefulness of SPM2 or similar softwares 

(see BEST; Wang et al. 2016b) in interpreting site information is an important 

intermediate step towards popularizing reliability-based or risk-informed design in 

practice. 

 

The importance of SPM2 to geotechnical practice is illustrated in Figure 5. Lambe 

(1973) questioned the correctness of Figure 5a that shows the quality of prediction 

increasing with the quality of the method regardless of the quality of data. He opined 

that Figure 5b is closer to reality. The quality of prediction is optimal for a particular 

combination of method and data. Increasing the quality of method or data alone 
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beyond this “best” combination may not result in an improvement of the quality of 

prediction. 

 

It is safe to say that the quality of our method is currently much higher than the 

quality of our data (open circle in Figure 5b). We conclude with a question: do we 

need even better methods? Or better data? 
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Figure 5. Quality of prediction as a function of quality of method and quality of data 

(modified from Lambe 1973) 
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Table 1. Summary of some soil/rock databases. 

Database Reference 
Parameters  

of interest 
# data points # sites/studies 

Range of parameters 

OCR PI St 

CLAY/5/345 
Ching & Phoon 

(2012a) 
LI, su, su

re, ’
p, ’

v 345 37 sites 1~4  
Sensitive to 

quick clays 

CLAY/6/535 Ching et al. (2014b) 

su/σ'
v, OCR, (qtσv)/σ'

v, 

(qtu2)/σ'
v, (u2u0)/σ'

v, 

Bq 

535 40 sites 1~6 
Low to very 

high plasticity 

Insensitive to 

quick clays 

CLAY/7/6310 
Ching & Phoon (2013c, 

2015b) 

su from 7 different test 

procedures 
6310 164 studies 1~10 

Low to very 

high plasticity 

Insensitive to 

quick clays 

CLAY/10/7490 
Ching & Phoon 

(2014a) 

LL, PI, LI, '
v/Pa, St, 

Bq, 

'
p/Pa, su/'

v,  

(qtσv)/σ'
v, (qtu2)/σ'

v, 

7490 251 studies 1~10 
Low to very 

high plasticity 

Insensitive to 

quick clays 

F-CLAY/7/216 D’Ignazio et al. (2016) 
su

FV, '
v, '

p, wn, 

LL, PL, St 
216 24 sites 1~7.5 

Low to very 

high plasticity 

Insensitive to 

quick clays 

J-Clay/5/124 Liu et al. (2016) Mr, qc, fs, wn, γd 124 16 

Soft to stiff clayey soils and silty clay 

soils with high variability of the strength 

and stiffness characteristics 

Mr = 12.54~95.82 MPa 

qc = 0.22~3.93 MPa 

fs = 0.03~0.14 MPa 

wn  (%) = 6.91~78.11 

γd=10.47~19.92 kN/m3 

SAND/7/2794 Ching et al. (2017d) 
D50, Cu, Dr, '

v/Pa, 

, qt1, (N1)60 
2794 176 studies 1~15 

D50 = 0.1~40 mm 

Cu = 1~1000+ 

Dr = -0.1~117% 

ROCK/9/4069 Ching et al. (2017e) 
n, , RL, Sh, bt, Is50, 

Vp, c, E 
4069 184 studies 

 = 15~35 kN/m3 

n = 0.01~55% 
c = 0.7~380 MPa 
E = 0.03~120 GPa 
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Note: LL = liquid limit; PL = plastic limit; PI = plasticity index; LI = liquidity index; wn = natural water content; Mr = resilient modulus; qc = cone 

tip resistance; fs = sleeve friction; γd = dry density; D50 = median grain size; Cu = coefficient of uniformity; Dr = relative density; ’
v = vertical 

effective stress; ’
p = preconsolidation stress; su = undrained shear strength; su

FV = undrained shear strength from field vane; su
re = remoulded su;  

= effective friction angle; St = sensitivity; OCR = overconsolidation ratio, (qt-σv)/σ'
v = normalized cone tip resistance; (qt-u2)/σ'

v = effective cone tip 

resistance; u0 = hydrostatic pore pressure; (u2-u0)/σ'
v = normalized excess pore pressure; Bq = pore pressure ratio = (u2-u0)/(qt-σv); Pa = atmospheric 

pressure = 101.3 kPa; qt1 = (qt/Pa)CN (CN is the correction factor for overburden stress); (N1)60 = N60CN (N60 is the N value corrected for the 

energy ratio); n = porosity;  = unit weight; R = Schmidt hammer hardness (RL = L-type Schmidt hammer hardness); Sh = Shore scleroscope 

hardness; bt = Brazilian tensile strength; Is = point load strength index (Is50 = Is for diameter 50 mm); Vp = P-wave velocity; c = uniaxial 

compressive strength; E = Young’s modulus. 

 

 

Table 2. Bias factor and variability for some existing clay transformation models (calibrated by CLAY/10/7490 except Mr models. Mr models are 

calibrated using a local database J-Clay/5/124). 

Target 

parameter 

Measured 

parameter(s) 
Literature Transformation model 

Calibration results 

N Bias (b) COV () 

'
p LI, St Stas & Kulhawy (1984) p/Pa  101.11-1.62LI 249 2.94 1.90 

'
p LI, St Ching & Phoon (2012a) p/Pa  0.235LI-1.319St

0.536 489 1.32 0.78 

'
p wn, PL, LL Kootahi & Mayne (2016) 

If 5.512log10(v/Pa)-0.061LL-0.093PL+6.219en > 

1.123 

 p/Pa  1.62(v/Pa)0.89LL0.12wn
-0.14 

Otherwise 

 p/Pa  7.94(v/Pa)0.71LL0.53wn
-0.71 

1242 1.10 0.67 

'
p qt Kulhawy & Mayne (1990) 

p  0.33(qt-v)

  

690 0.97 0.39 

p  0.54(u2-u0)  690 1.18 0.75 

'
p qt Chen & Mayne (1996) 

p/Pa  0.227[(qt-v)/Pa]1.200 690 0.99 0.42 

p/Pa  0.490[(qt-u2)/Pa]1.053 542 1.08 0.61 

p/Pa  1.274+0.761(u2-u0)/Pa 690 0.49 0.59 

OCR qt Kulhawy & Mayne (1990) OCR  0.32[(qt-v)/v]  690 1.00 0.39 
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OCR qt Chen & Mayne (1996) 

OCR  0.259[(qt-v)/v]1.107 690 1.01 0.42 

OCR  0.545[(qt-u2)/v]0.969 542 1.06 0.57 

OCR  1.026Bq
-1.077 779 1.28 0.86 

su PI Mesri (1975) su/p  0.22 1155 1.04 0.55 

su OCR Jamiolkowski et al. (1985) su/v  0.23OCR0.8 1402 1.11 0.53 

su OCR, St Ching & Phoon (2012a) su/v  0.229OCR0.823St
0.121 395 0.84 0.34 

su qt Ching & Phoon (2012b) 

(qt-v)/su  29.1exp(-0.513Bq)  423 0.95 0.49 

(qt-u2)/su  34.6exp(-2.049Bq)  428 1.11 0.57 

(u2-u0)/su  21.5Bq 423 0.94 0.49 

Mr qc 

Liu et al. (2016) 

Mr=(1.64qc
0.53+2.58)2.44 124 1.02 0.24 

Mr fs Mr=(26.11fs
1.4+3.83)2.44 124 1 0.34 

Mr wn Mr=(-1.07wn
0.34+8.12)2.44 124 1.02 0.27 

Mr γd Mr=(0.0019γd
2.33+3.51)2.44 124 1.03 0.33 

Mr qc, fs Mr=(1.46qc
0.53+13.55fs

1.4+2.36)2.44 124 0.99 0.23 

Mr wn, γd Mr=(-0.94wn
0.34+0.0011γd

2.33+7)2.44 124 1.02 0.25 

Mr qc, fs, w, γd 
Mr=(1.13qc

0.53+13.06fs
1.4-

0.75wn
0.34+0.0007γd

2.33+4.75)2.44 
124 0.97 0.06 

*All su are the “mobilized” su defined by Mesri & Huvaj (2007); en: natural void ratio.  
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Table 3. Bias factor and variability for some existing sand transformation models (calibrated by SAND/7/2794). 

Target 

parameter 

Measured 

parameter(s) 
Literature Transformation model 

Calibration results 

N Bias (b) COV () 

Dr (N1)60 Terzaghi & Peck (1967) Dr (%)  100[(N1)60/60]0.5 198 1.05 0.231 

Dr N60, OCR, Cu 
Marcuson & Bieganousky 

(1977) 

Dr (%)  100{12.2+0.75 [222N60 +2311-

711OCR-779 (v/Pa)-50Cu
2]0.5} 

132 1.00 0.211 

Dr 
(N1)60, OCR, 

D50 
Kulhawy & Mayne (1990) 

Dr (%)  

100{(N1)60/[60+25log10(D50)]/OCR0.18]}0.5 
199 1.01 0.205 

Dr qt1 Jamiolkowski et al. (1985) Dr (%)  68[log10(qt1)-1]  681 0.84 0.327 

Dr qt1, OCR Kulhawy & Mayne (1990) Dr (%)  100[qt1/(305QcOCR0.18)]0.5 840 0.93 0.339 

 Dr, cv Bolton (1986)   cv + 3{Dr[10-ln(pf)]-1} 391 1.03 0.052 

 Dr, cv Salgado et al. (2000)   cv + 3{Dr[8.3-ln(pf)]-0.69} 127 1.08 0.054 

 (N1)60 Hatanaka & Uchida (1996)   [15.4(N1)60]0.5+20 28 1.04 0.095 

 (N1)60 Hatanaka et al. (1998) 
If (N1)60  26    [15.4(N1)60]0.5+20 

Otherwise    40 
58 1.07 0.090 

 (N1)60 Chen (2004)   27.5 + 9.2log10[(N1)60]  59 1.00 0.095 

 qt Robertson & Campanella (1983)   tan-1[0.1+0.38log10(qt/v)]  99 0.93 0.056 

 qt1 Kulhawy & Mayne (1990)   17.6 + 11log10(qt1)  376 0.97 0.081 
*cv: critical-state friction angle (in degrees); pf is the mean effective stress at failure = (1f+2f+3f)/3; QC = 1.09, 1.0, 0.91 for low, medium, 

high compressibility soils, respectively.  
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Table 4. Bias factor and variability for some existing intact rock transformation models (calibrated by ROCK/9/4069). 

Target 

parameter 

Measured 

parameter 
Literature Transformation model 

Calibration results 

N Bias (b) COV () 

c n Kılıç & Teymen (2008) σc ≈ 147.16×e-0.0835n 911 0.91 0.747 

c RL Karaman & Kesimal (2015) σc ≈ 0.1383×RL
1.743 664 0.76 0.560 

c Sh Altindag & Guney (2010) σc ≈ 0.1821×Sh
1.5833 297 1.15 0.650 

c σbt Prakoso & Kulhawy (2011) σc ≈ 7.8×σbt 525 1.31 0.496 

c Is50 Mishra & Basu (2013) σc ≈ 14.63×Is50 1074 1.18 0.445 

c VP Kahraman (2001) σc ≈ 9.95×VP
1.21 1247 1.26 0.632 

E RL Katz et al. (2000) E ≈ 0.00013×RL
3.09074 289 1.29 0.997 

E Sh Deere & Miller (1966) E ≈ 0.739×Sh+11.51 197 0.61 0.712 

E σc Deere & Miller (1966) E ≈ 0.303×σc-0.8745 1152 1.23 0.941 

E VP Yaşar & Erdoğan (2004) E ≈ 10.67×VP-18.71 192 0.90 0.724 
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